M10 Honours: Section 1.5b Inverse of a Quadratic Functions

1. Given each equation for y = f(x), find the inverse equation $g(x) = f^{-1}(x)$.

a)	y = 3x - 4	1
aj	y - 3x - 2	t
	•	

b)	y =	-8x + 1
		2

c)
$$y = \frac{2 - 3x}{4 + 7x}$$

d)
$$y = \frac{2x-1}{3x+1}$$

e)
$$y = -2x^2; x \ge 0$$

f)
$$y = 3(x-5)^2$$
; $x \ge 5$

g)
$$y = (x-3)^2 + 1$$
; $x \ge 3$

h)
$$y = -(x+2)^2 - 5$$
; $x \ge -2$

i)
$$y = -3(x+5)^2 + 6$$
; $x < -3$

j) $y = 2x^2 - 8x + 11$; $x \ge 2$

k) $y = 2x^3 + 6x^2 + 6x + 2$

 $L) y = 5x^3 - 3x^2 + 6x - 12$

2. Graph $y = f^{-1}(x)$ for each function on the same grid. Restrict the domain if necessary:

a)

b)

c)

f)

2

3. The following points (3,5), (-3,-7), (-2,8), (7,-10), and (-3,-9) are on the function y = f(x). What will the coordinates be on the function: $y = |f^{-1}(x)|$?

4. Under what conditions will both y = f(x) and $y = f^{-1}(x)$ be a function for all values of "x"? Provide examples of such functions:

5. Given the function of the parabola, find the equation, domain, and range of the inverse function. Note: The domain is restricted so that the inverse is also a function.

i)
$$y = 2(x-3)^2 + 1$$
; $x \ge 3$

iv)
$$y = 0.2x^2 - 2x + 6$$
; $x \ge 5$

ii)
$$y = -3(x+4)^2 - 5$$
; $x < -4$

v)
$$y = \frac{2}{3}x^2 + 8x + 14$$
; $x < -6$

6. If f(3) = -5 and f(-5) = 7, then what is the value of $|f(-5)| - f^{-1}(-5)$?

7. At which points on the graph of y = f(x) will it always intersect the inverse function $y = f^{-1}(x)$?

8. Given each of the following functions below, please indicate if both y = f(x) and $y = f^{-1}(x)$ are functions for the domain when $x \in \mathbb{R}$. Justify your anwer:

a) $y = 3x + 2$	b) $y = 3(x-3)^2 + 1$
c) $y = 2^x + 1$	$d) \ \ y = \sqrt{3x - 1}$
e) $y = \frac{1}{x - 3}$	f) $y = x^2 - 3x$

- 9. A parabola with equation $y = ax^2 + bx + c$ is reflected about the x-axis. The parabola and its reflection are translated horizontally five units in opposite directions to become graphs of y = f(x) and y = g(x) respectively. Which of the following describes the graph of y = (f + g)(x)? i.e.: y = f(x) + g(x)
 - a) A parabola tangent to the x-axis
- b) A parabola not tangent to the x-axis

- c) a horizontal line
- d) A non-horizontal line
- e) the graph of a cubic function
- 10. Challenge: Find the exact values of the equation: $2\sqrt[3]{2x-1} = x^3 + 1$ [Hint: Use Inverse]Adler 2011